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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1171

ON SUBSONIC COMPRESSIBLE FLOWS BY A METHOD OF CORRESPONDENCE
ITI — APPLICATION OF METHODS TO STUDIES OF FLOW WITH CIRCULATION
ABOUT A CIRCULAR CYT.INDER

By Shepard Bartnoff and Abe Gelbaxrt
SUMMARY

A generel method for studying the flow of & compressible fluld
around & closed body has been discussed previously in part I of this
report, In the present paper application is mads to the spscifiic cacge
in which the linearized equation of state is used. For a given incom—
prossible flow around a gpecific profile, a corresponding compressible
flow 1s found. The flow at infinity remsins unchanged. Detailsd stud-
ies are made of the flow with circulation around a unit circle, and
velocity distributions are found for a wide range of Mach number and
angle of attack. Comparisons are made with other methods.

INTRODUCTION

- The present report is the continuation of & previous report by
Gelbart (reference 1) in which a general mathkod for studying the flow
of a compressible fluid around a cloged body is discussed. The method
is based on finding compressible flowe that correspond to given incom-
pressible flowa.

Since the compressible complex potential in the general case is
not an analytic function, the ordinary theory of analytic functions of
e complex variable is not applicabla. However, in the hodograph plane
(where the variables are the velocity magnitude and the direction of the
flow) the complex potential is a functlon of the type studied by Bers . :
and Gelbart (references 2 and 3) and termed by them "sigma-monozenic."

In the present report, the condition under which the differentlal
equations of a compressible flow in the hodograph plane become Cauchy—
Riemann equations isg used. This occurs when the linearized equation of
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state 18 used (¥ = =1). The complex potential in the hodograph varlables
is then an analytlc function and the theory of functione of a complex
varieble is epplicable. The linearized squation of stats 1s used
throughout in this report.

Emphasis is placed on thé compressible flow with circulaticn around
a unit circle. The correspondence function is chosen so as to yleld
this flow to a very close approximation even for falrly high free-satream
Mach numbers. The distortion of ‘the bcdy 1s very slight, but, as is to
be expected, increases for very high free—gtream Mach numbers. The re—
sulting body shapes ave studied for the entlre range of possible free--
gtream Mach number, which for subsonic flows is from O to 1. Resulting
body shapes are algo studied for different angles of attack. Finally,
velocity distributlions are compubted around the slightly distortsd unit
circle for different free—stream Mach numbers and for different angles
of attack.

Scme comparisons are made with the results of Tsien and Bers.
Bers! and Tseien's formulas turm out to be speclal cases of the main for—
mila derived 1n this report. One advantage of the present method is
thaet 1t ylelds flows with circulation about nonsymmetric closed profiles,

This work was sponsored by and conducted with thélfinénéiél_assist—-
ance of the National Advisory Committee for Aeronauticse. This report
was submitted in July 1945,

GENERAL FLOW THEORY

Several of the more commonly used eguations governing the behavior of
fluids will be mentioned here without proof. These are relations involv—
ing the quantities: velocity q, pressure p, demsity o, ratic of the
specific heat at constant pressure to the apecific heat at comstant volume
7, eand the velocity of-sound a, Subscripts of zero (i.se., Dor Pos ao)

refexr to values of the respective quantitles at a stagnation point {q = 0).

The first fundamental relation 1s Bernoullifs equation, which may be
written in differential form .

qdq+-£;~dp=0 (1)

Another fundamental relation is the isentropic relation (adiebatic
equation of state)
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Y
P = Po _E.>

The velocity of sound is glven by

2= _ 22
p e -
Hence
. Po
2
a = —
o 7po

The units of density and veloclty will be so chosen that

]
(=

Po
&g =

The quantities p and q will tren be dimsunsionless.
The foliowlng relations are essily derived.
2

a2=l---%'-(7-l) q

1 L
D=[l~-2- (r - 1) q‘] 7—1
S 2
p=potl—§ (7 = 1) q2}7l
The Mach number M 1s defined by

M= =
a

The symbols M_ and g, refer to the velues of these respective

quentities in the free stream.

(2)

(3)

(5)

(7)

(8)

(9)

[O) |



L NACA TN No. 1171

The velocity potential ¢ and the streem function  for en incom-
pressible flow satiefy the differential equations,

¢x = ‘b’y
¢y = '"‘J"x

(10)

the subseripte x and y denoting partial diffserentiation with respect
to these varisblea. These equatliocns are the Cauchy-Riemenn equations, so
that

L

0 =9+ 1y (1)

is an analytic function of the complex variable 2 = x + 1iy.

If instead of using the independent varisbles x and 'y in the
physical plane, the inflependent variables g and @ in the hodograph
plane arc used, where ¢ 1s the magnitude of the velocity and 6 1s
its direction angle, the differential equations become

Po = a Vg
(12)
¢q_ = "%‘l’a
By making the change of variable
q
A
q = &
1=/ 3 (13
q.OD
the system (12) tecocmes
¢e "Wa
(14)
¢q = —'WQ

which ares agein the Cauchy-Riemann equations. Thus, in the hodograph
plane the incomprsssible complex poventlal is an snalytic function of
the complex variable w =6 + 1§.
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The physical and hodogreph variables for an incompressible flow are
connected by the relation,

dz = e~ ¥ a3 (15)

The analogous differential equations for a compressible flow in the
physical plene are

¢1 = JD‘W.Y . por
. (16)
1
¢y = - 5 w,x
and in the hedograph plane are
forate (a7)
17
¢q_ = - S M2 WG
pg .

System (16) is nonlinear, and no systematic mathematical treatment for
such equations exists. However, metheds for a systematic treatment of
the solutions of equations (17) have been developed in reference 1.

The equation analogous to equation (15) for a compressible flow is
dz = &— (a¢ + i d\p> - (18)
q p
Equations (17) may be symmetrized by the changs of variable

4 ’ .
E=/@dq . (19)
f.q'm . |

Note that q = O,
o

Equations (17) then become
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-—2~
¢e='lpM\!’q
¢€=_@We

(20)

it ~EE = constant, equations (20} reduce to the Cauchy-Riemann

p
2 .
equations. When @ = constant, +the constant cean be evaluated by
o _
choosing q = 0. Hers My = [M(q)] g=o = 0 and
S )
1 - M° 1
=== 1 (21)
o] Po
q=0 -

This implies ttat 7 = ~1. For when M is replaced by g¢/a, 1t
follows from eguation (21) that

a2 — l.:12 — a2‘:)2 = 0 (22)
Then, by differentiation,

ap

I =° (23)

de 2 2
QaTq(l—p)—-Eq—Eap
From relation (6),

da
28 i (7 _1)q

and from relations (7) and (6),

[}

1
de A 2) =1
dq 'q'<1' g ¢ 4
b3

-4 (l - .?.’__E___l qe) ;:'l

vl
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Substitution of these values into equation (23) gives

[(r ~1) -2][A~Flg=0
(-1 (r --1) - 2] =0
vy = =1 (24)

With this value of 7, +the equation of state (2) becomes

D = Bo o (25)

and since the density is proportional to the inverse of the volume, the
volume becomes a linear function of the pressure. This linearized equa—
tion of state will be used throughout the remsinder of this peper.

It should be émphasized that no actual gas satisfles the pressure—
density relationship described by equation (2%5). For actual gases, 7
lies between 1 and 1.6, having a value of 1.4 for air. The simplifice--
tion resuiting when ¥ = -1, and ths fact that the theory of analytic
functions of a gomplex varisble then becomes applicable, led Chaplygin
and later von EKarman, Tsien, and others to study the properties of such
a fictitious gas (references 4 to 11).

Von Kérmén (reference 7), however, showed that using the
value 7y = -1 1s equivalent to replacing the curve of pressure agelinst
reciproceael denslity in the adiebatic case by & tangent line to that curve.
At snd near the point of tangency, the fictitious gas approximates the
behavior of the actusl gas. The study of the behevior of the fictitious
gas is Justifled by the insight such a gtudy glves into the solution of
the actual prchlem for subsonic flows.

When 7 = -1, equations (6) tc (8) become

82 = 1 + g2 (26)
1
om ot : (27)
1+ g®

P =po/1+g? . (28)
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and 1t follows directly that
M

q = =
J1 -~ M2

Equations (20) reducs to the Cauchy-Riemann equations,

¢e "W&'
P = - ¥

Thus, Q= ¢ + 1y is en analytic function of w = 6 + i,

From equetiona. (19}, (21), and (27) it follows that

Q@ e
~ - ¥*
. q . Qs 1 + g
. 4,

- - log (}.g%ﬁ%) :

= log
<1+Jl+q

where

Hence,

From this equation,

3 [
1%,

Also, from equations (33) and (27),

(29)

(30)

(31)

(32)

(33)

(34)
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Ji+g2 1
q pg
=X 1 o
el ¢

and by use of equation (34),

+ o B e (35)

pqg 2e 2K

Upon substituting the valuss of %— and BJ-E from equations (34) and

(35) into equation (18), it follows that '

dz

5D e D

_elerx _ed
== [eﬁ (¢ + iaV) = (ag m\u)]

=2 o' + 1D (a8 + 1aW) — ¢ o' (o ~ 4T) (aF ~ 1a))

- K _iw _ A THw
2e aq 2Ke a0

S IOV

Since Q = ¢ + iV is an analytic function of the complex variable
w =06+ if, the mapping

and

d
2 = f(g)
W= -1 log-——%—g——-— S (37)
K-&-—g- G(t)

defines & complex potential G({) " of a compressible Flow in the t—
plane, where f£(f) and G({) are enalytic functions of the complex
varieble {. The region of regularity of f£(f) and G({) will be
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dealt with later.
runctlon.
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The function f£({) will be called the correspondeunce

From equation (37), with primes denoting differentiation with re—

spect-to ¢,

and

iv o2 £t
22 20 (38)
-—iw X G §

After substitution of equations (38) and (39) into equation (36), it

follows that

o]
]

go that

7 G({)

plane, equation (40) will map that flow into the
spondence function £(f)

K

ey [T oo

K [ 2 o K [G:(t)
—E-/Ef_(ﬁ) d-g""'é‘id/ 2'[—&(5])‘—

= £(t) —ﬁ-/ll Y dg (40)

represents the flow around a given closed body in the {—

z-plane. The corre-
will be chosen in such a way that the flow in

the z-plane will be essentially around the same profile as in the §—

plane.

The compresgible—flow velocity in the
frem equation (37).

By taking absolute

z~plane may be determined

For, -
oIV e—i(e+1’i) _KGH(t)
2 f'(g)

-le e'ci = % g_;_gg% (k1)

values,
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st

o~

ol = X
2

and making use of equation (33),

it follows that

(42)

g

=

C Rt

NPT S
»

N

Stagnaticn points occur when ¢ = 0. Thus, the stagnation points
are located whers

Gr (L) =0 (43)

It is desirable that the correspondence should not alter the flow at

infinity. At infinity, 6 = O and el = 1. An examination of equation
(41) shows that the condition for the flow to remain unchanged at infinity

is
Since G*(¢) is régular end different from zerc at infinity and if
gl_im»%_&% is to exist and be different from zero, the most gensral
form that £*{f{) can bave is
» :
£(¢) = z bn EJ%’ bg # O (45)
n=c S,
where
¢ = roi? (46)

Then
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[==)
b
i‘(§)=b_l+b°§+bllog§—?—%'&f§lﬁ (¥7)
n=3
Also
lim fv(g} = by
{ —>o
and from equation (4b)
im K g ' ]
Po = t—>m2G ) (8

Thus, the condition of the flow at infinity in general predetermines the
value of by,

It 1s desirable to obtain the intograri in the right—hand side of

equation (40) as a power series ir

=
Set
f‘(g) ‘g‘ J_Lﬁ
n=c B
.Y By %; (49)
ri':o ¢
Then » o _
HORETHOETS
=0 ¢ n=o ¢
. S Y e
= Z e

Equating coefficlents of like powers of (

N

U X L

)"
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1 = by By )

0 = by Bo + bo By

o
]

bz Bg + by By + bo B2 } (50)

O0=15b, By +by; B + . . .+ban_l+ban

. . . > . » L « s L] . .

These equatlons yileld the iteration formmlas

=
B, = bg
1 (51)
o}
wvhere n >0, or
by O 0 0 ... 0 o 0 o 1
By bo O 0 ... 0 0 0 0 o0
b= by by O ... 0 0 0 0 O
b, b2 b P ... 0 0 O O O
= -—l—-— . . . . L] . L] . . . . . . . . . L]
Bn N+l (52)
bO

bne Pn—a bn4 bps ¢+ b2 by B O O
bpy Ppg Do Ppa - - - By Dy by B O

Then set
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"%/&%ﬁﬁ"“"‘ uv@n(z B ) ot

n=o

=Cy { +0Cplog] + Z Cn 2 (53)

n=

=]
re

Equation (4O) then becomes

o
= by + g + by logf — S—‘
‘A=

11
)
)

+ Cy ¢ + Co logt + y Cn_—lﬁ (54)

n=4 B

ix iz

When ¢ 4s replaced by vre and Z by re ', eguation (54%) becomss

2 = by + by rei™ 4 by log r + Dby (i)

= —1
(3—' bnyr 1 ——i.nk)-‘- Cay o + Co log r

n=3i

FCo(-in) 4 ) g dpel™ (53)

n=1

If a closed contour in the {-plane 1s to be mapped by equation (55)
into & closed contour in the z—plane,

by —Co = O (56}

This predetermines the value of Dby.



N4CA TN No. 1171 ' 15

Set

N =">b. +by logr +Co logr (57)

Under the condition of equation (56)

[==)
b —
Z=N+'b°ren'—<y Eﬁ'—-}—em)

/., n
n=1
m s

+ C—y re_ﬂ' + Z Cn I—]fl- ot (58)
n=1

THE FLOW AROUND A CIRCLE

The example of a compressible fiow that will be treated here in
detail is the flow with circulation around a circle. This example has
been chosen becauvsse of its fundemental Importance.

In determining the correspondence that will give the compressible
flow around a unit circle, the complex potential function chosen is that

of an incompressible flow with circulation around a circle of radius R
in the {-plare, namely,

o) =q (¢t +5) -L 1t (59)

where I' is the circulation. Stagnation points occur where G ( g) =0
(equation (13)).

er(t) = q,~L1-fa (60)

If ¢ = Re'Y,
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Gf = g _irle-—ik__qme——iak

= 2 R

i

q _E.:Ecosx—r—;-sink—q cos“&k+1qmsin2x
© 21 R 2r R »

- L1 . ( S >
qm(l cos 2\) EﬂRain}.-ii q, sin 21 Echosx

1 [ . 1
sinA.(Q ein).—-L—>+icoak2 gin A — I~ =
e 2n R \q‘” 2r R

ix L
e 2 in A — k- =
(q'ms 2nx R

Hence

e
b 4

IG'} = 2q_sin A -

a, A =180° —~ a. Then,

i

Let there be stagnation points at A

2q sina.--—r—l-£=0

© 2r R

T . ' 61
on 2q°°Rsincx. (61)

Thus, fixing the circulation fixes the atagnation pointa and hence
the angle of attack.

Equation (48) is used to fix the velocity at infinity. Since

lim  G*(¢) = g (62)
t—> o =
Kg
bo = _’Eg

- £;ﬂ('.,/a. +q2 ¢ 1) (63)

\
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The equation of a unit circle is { = el», If equation (58). is to
approximate such a circle, the sum of the coefficients of the e*~terms
should equel 1 and the coefficients of the other texms should approximate
zero. Ths first step in achieving this end is to set the coefficients of

all the e"m-—terms, n> 2, equal to zero; that is,

bp =0, np2 (64)

-+

The correspondénce function i‘(_t,) then reduces to

f(§)=b-—l '!‘bog‘l'bl logg—'bg}" (65)

¢

f‘(§)=bo+bl§'~+b2—;—‘é- - (66)

¢

Also, equation (58) beocones ' L

ba .
z = N+ b, Re™ —~ =2 ¢"4*

o
#Coy Ro T 40y ey y Cn -é-h oI (67)

The sum of the coefficlents of the e

A'--1:.6:1:‘111:3 may be n;ade eg_uai to 1
by fixing R so that . .

Do R+ CyE=1 | - (88)

Also the & T —term mey be eliminated entirely by fixing by so that

b . .
_.§E+C_1R=O (69)
Then eq_uation (67) becomes \
[+]
z=N+ei>"+V Cn—%ﬂein}‘ (70)
- R



18 RACA TH No. 1171

In this equation N is a translation constent that does not affect
the shape of the body. The Cp coefficilents are shown to be small and

thexrofore the resulting body shape is essentially a circle.

It will be shown later that all the odd Cpn coefficlents are real
and the even Cn coefficients are pure imaginary. Therxefore

z = x + iy
C 2 04 . )
= cos M — -— sin 2\ + G, cos 3» — — sin Lo+ Cy cos 5k + . . .
i i )

i

+...}+N (71)

* 1{ein)\.+93cos 2L + G, sin 3\ + 3% cos Yi + G, sin 5

where the constant N is chosen uc malke the absolute value of- z when
A = 90° equal to the absolute valus of z when A = 270°,

N=Cz—C4+Cq ~Cp+ ... (72)

and N 1e pure imaginary. The resulting body is symmetric with respect
tc the y-eaxis.

After the circulstion is fixed to give a desired angls of attack by
equation (61), expression (59) for the complex potential G({)} reduces %o

G(¢) = %D<? _ii 2R sin_q ;og é +_%E> (73)
and
() =, (t-tesma-FE) (74)
Then - ¢
2 3 4
[G=<a>Ja=Al—mz§—A,lz—§+mz;}ml% (75)

where
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Ay =4af ‘
Az = bg B sina (76)
Aa=q_: (4 sin® o + 2)
and

C—]_ = - % A;_EO

Co = -% (-“-151. — 1A7BoR)

Gy = f (3B2 — 1AaB1R — ABoR")

Ca = = 2 (A,B, — 18252 — ABiR® + 1ABR)

CS = ™ 333 (A134 - iAZB;_r, — ASBER + iAgBlR + A]:.BQR ) (77)

i 6 = pimg (nBg — 1ABR — AT + 1B + MBE)
Gn=,+an(Aan+l R—ABn_lR +iAan,2R3+Aan_3R)

Also, since bp = 0, n > 2, the relations for Bp eas given in
equations (51) to (53) become :
1l

Bo = —
o] bo

1
By = ~ f (D1Bo)

B = — p= (baB, + baBa)
(78)

o
]

1
3™ 7By (b2By + b1B2)

1
~ %55 (bzBp-z + b1Bp-1), n> 1

td
B
L]
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In determinant form,

bo O O . 00 0O O O 0 1
b, b O 00 0 0 0O 0 O
bs by bo 06 0 0 0 0 O

N 0O 0 b . 00 O O O 0 O
Bp = Nl . + . . . . . . . (79)
by
0 0 O 0 bz by b 0 O O
0 0 © 0O 0 bz by bg O O
0 ¢ © 0 0 0O bz by bg O
0 0 © 0 0 0 0 bs by O

Alsc Bp 1is given by the summation

2 ) —
S—l.- (__l)n+r (n . I‘)".. bln 2T bar

Pn = 1 D41 (80)
—_— — H ~
—o rt(n - 2r)! bo
Thus, the first few B —terms are ) a
B oL )
° 7 %,
b
By = =3 > (81)
Yo
B by ® b2
o Y -
b by 3y

The firet two Cp—terms as given by equations (76) and (77) are
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\ (82)

Equation (69) is now used to determins bgz:

—B'g+C——lR"-‘0 o
R

bp _1; 1
— — = e === 0
R 4 %

AR
= (83)

b2=

Equation (56) is used to determine Db;:

by —Co = O

bl -— éﬂ; — i éZB. = O
kb2 kb,

Ub®by — A3by = 1AgboR

The quantity b; must be pure imaginary. Therefore,
by = =by
Uby2by + Ayby = iAsb.R

Azb R (8k)

bl = 1 =
)-l-bo + Al
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If in like manner equation (68) 1s used to evaluate R, the resulit—
ing complicated expression may be reduced to

b
R= 9 (85)
1-M2 gin® o

It is interesting to note that all odd Bp—terms and all even Op—
terms are pure lmaginary, whersas all even Bp—~terms and all odd Op—
terms are real; also, that when o = 09, cormesponding teo a zerc angle of

b.
attack, R= Db, by =0, and b, + 1;5 = 1,

Equation (42) is used to detvrmine the velocity on the body corre—
sponding to any value of A. The velocity is limited by the restriction

a8

G (t) (86)
£1(¢8)
When equation (61) is substituted into equation (60),
2
GH(L) =g, (1 -2t R sina,-li—gé>
: ¢ ¢
= q_m<l - 21 sin g & ** - e—zn)
=qw[l~23inmsin7\.-coe 2)
+ 1(—2 sin o cos A + sBin 2A) ] (87)
Equation (66) can also be rewritten
= by —1A | by —21XA
£(t) b°+Re + o8 @
b b
=b°+——l-sink+-gcos 2A
iR R2
+ 1 (-bl cos A ~ 22 gin EA.) (88)
iR R2
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The maximum value of g’—t(-u

T ( §) occurs when A = 90°. TFor this value

of A, G(t) = 2q_(1 - sin a) amd fi(t) = bo + by _ %. Hence, by
restriction (86),
[+] b -
bo + 22,12 -
iR R
By substituting f£rom equations (83) end (8k)
Asb A
qm(l—-sina)<'bo+ 20 4t - (90)
to® + Ay ¥Po
By substituting Trom equations (63) and (75)
17/ 2
il -sinal< 3 (,,l + a7+ l)
2¢? gin o C,/I+ g2 +1 q2 -
+ [« + ‘\" o] + (91)
TR NG f——?
ll-(,\/l+g_m+4> +q2, 2 l+q_°°+1>
1+ g%
1 - sin o< LR q‘°°2 sin o
s 1+ a5
and using equation (29),
M <l+M (L+M)sna (92)

Hence, for a zero angle of attack, M, may vary between O and 1.
For a given M,

however, equaticn (92) limits the permissible angle of
attagk.
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COMPARISON WITH TSIEN METHOD

The equation derived by Tsilen, refereuce 5, in the notation of the
present paper, is

z = { -~ %JFLG*(g)]a af (93)

Thus it 1s seen that Tslen's equavion is a specia.l cage of that used in
the present report where

£(¢) =¢

Tsien's equatlon alters lhe velocity of the flow et infinity, or the freo—
stream velocity, but this is relatively unimportent since the amount of
the change is readily deotermined. However, asince Talen's equation hes no
by term, it cannot be used to study flows with circulatian. In Teien's
equation I* 1s therefore zero and G is

&(t) =a_(¢ + —-—) (9h)

Then,

Gt (p

L]
TN
)
1
e
oy
S

lat(¢)® =

V
*
A

ix

- 1 z2o-x_ 1 = ) A iz »
= Re 4que : 2(1 Re +12qu9

In order tc have Tslen's equation give as nﬁarly circuler a body as possi—-
ble, let-

R-ZagR=1 (95)
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Then,
B & o A s YR S-S £ ¥ %
Z =9 L que + i gc Re
= ( >c05>.+———-q_2Rcos 3x

+ 1 [<l+]3iq2m3)sinx+—f‘2-q21§sin 3)».|

Syracuse University,
Syracuse, New York, July 1, 1945.
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TABIE T.— CONSTANTS OF THE TRANSFORMATION FUNCTION FCR VARIOUS MACE NUMEXES [o = —209]
0.1 0.2’ 0.3 0.k 0.5 0.6
9 0.10050% 0.20412h 0.314k486 0.436Y436 0.577351 0.750000
Y, 1.002521 1.010309 1.02k1kl 1.045546 1,077352 1.125000
by -1(0.003k450) ~4(0.01H173). ~1(0,033399) | -1(0.063618) | -1(0.109575) -4 (0.150766)
by -0.002538 - .010623 025864 .051706 .035270 .172420
B 1.003695 1.015059 1.035041 1.065488 1,109807 1178459
Ca -1(0.0017) -1(0.0069) ~1(0.0157) ~1(0.0283) ~1(0.0458) -1(0.0722)
c3 0.0008 0.0037 0.0078 0.0137 0.0212 0.0308
o, 1(0.0003) 1(0,0002) 1(0.0005) -1(0,0031) ~1(0,0067)
Cs -0.0001 0.0007 0,0016
Og -1(0,0002) 1(0.0006)
¢ ~0.0007
X -1(0.0017) ~1(0,0072) -1(0.0159) -1(0.0288) -1(0.0k29) -1(0.0655)
O e e & s
N ° ~10° 1 ~20°

Qo 0.314486 lo.314us6 0.314486

by, 1,024 11 02k 1.024144

b, 0.0000 l4{0,016824) }-4(0.033399)

By -0.025322 {0.025460 -0.025864

) 102444 [1,026931 1.035041

c, 0.0000 1(0.0080) -(0.0157) ]

G5 0,0069 0.0078 0,0078

o 0.0000  14(0.0002) 1(0.0002) o

O 0,0001 ©.0001

¥ 0.0000 (0.0078) 4(0,0159)




PABIE ITI.— CONSTANTS OF THE TION FYUNOTION FOR
VARIOUS ANGIES OF ATTACK |um. 0.7]
o o !
o 50 -10°
Lom 0.580196 0.980196 0.980196
b, 1.200240 1,2001%0 1.200140
by 0.0000 -1(0,0720%1) -1{0.145138)
b, -0,288269 -0.290U27 «0,2963%0
R 1,200140 1204624 1218138
., 0.0000 -1(0.0249) ~1(0,0k96)
63 0.0956 0.0548 0.0523
G, { ©.0000 ~1(0,00b1) ~1(0.0080)
C_ n.0nshe ANEZ n nanh&
5 el Rl vavw g MUV
Cg o.'oooo -1(0.0007) ~1(0.0013)
& 0.0007 0,0006 0,000%
G 0.0000 -4 (0,0001) -1(0.0002)
Gy 0.0001
¥ 0,0000 -1(0,0214) -£0.00427)

TABIX IV.— lﬁmﬁ;g PRTIZE TROM CTRCIE
/" x ¥ r 12l aPr %
-90° 0.0000 | -0.9992 | 0.9992 | -90.0°
-75° 0.257% | -0,9656 | ©0.9993 | -75.1°
60° | oMgrr | -o.8668 | 0.99% | -60.10
~li5? 0.70u48 -0,7080 0.9990 -45,1°
~50° 0.5645 ~0.5017 0,9995 -30,1°
~15° 0,965 | -0.260 | 1.0002 | -15.1°
® 1,0008 | -0,003Y4 1 0008 | - 0.20
150 0.9674 0.2%562 | 1,0007 1%,8°
30° 0.8675 0.4982 1,000% 29.9°
450 0.7082 0.7050 1,0000 5,00
60° 0.5007 0.8652 | 0.9996 59.9°
75° 0.2591 0.9651 | 0.9993 75.0°
%° 0.0000 0.99%2 | 0.9992 90.0°
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TARYE V.~ DISTORTTON OF FROFTIR TROM OTROTE

R A i —

T M= 0.2; & = ~209] TABLX VI.— VELOCTTY DISTRIBUTION ON PRONIIE (Mgy= 0.3; o = 0°]

A x H iz arg = A x 7 = | arg £ 9 M
-90° 0,000 -0.9%3 | 0.9963 | -90.0° ~90¢ 0,0000 | ~0.9932 0.9932 ~90,0% | 0.6595 | 0.5505
~75° 0.2524 ~0.96U3 0.9968 ~T5.3° =750 0.2540 | ~0,9610 0.95%0 -75.2° | o0.624 0.5494

. _ J I R
-60° 0.%900 - ~0,8699 | 0,998% | ~60,6° ~50° 0.4932 | -0.8659 0.9965 ~60,3° | 0.5646 0.4916
4}50 T o.é976 -0,7172 1.0005_7 r-illa.is'r’ " jl;° i 70.70217 -0,7119 0.9993 45,89 1 0.4557 o.ms
-309 | 0.8603 | ~0.5146 | 1.,0024 |-30.9° ~30° 0.8659 | -0.5070 1,003k ’ -30.3° | 0.3183 | 0.3033
~159 0.965% -0, 271k 1,0035 _l15,9° -15° "0.9708 | -0.2638 1,0060 ~15.8% | 0,1633 0.1612
~0° | 10037 | ~0.0138 | 1,003¢ |- o0.8° 0° 1,0070 | ~0.0000 21,0070 0.0° | o.0000 | o.0000

15° | 0,977 0.248% | 1.0029 1%,3° 15° 0.9708 | 0,2638 1.0060 |  15,8° | 0,1633 | 0.1612

30° | 0.8717 | 0,928 1..0013 29,50 30° | 0.8655 | 0,500 | 1.003% 30.3° | 0.3183 | 0.3033
150 0,714 o,7022 | 0,996 1,69 50 0.7021 | 0,711 0.9998 540 1 odssT | oMak6

6° | o500 0.821 | 0.9979 59,%° 600 okg32 | 0.8650 emﬁs 60,20 | 05616 | oumb

75° | 0.2600 0,923 | 0.99%% .99 75° 0.25%0 | 0,910 0.8940 75.2° | o0.6241 | 0.5204

9%° | 0.0000 0.99%63 | 0,993 90,0° 90° 0,0000 | 0.9932 0.9932 90,0° | 0.6595 | 0.5505

TLIT “ON NI VOVN
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SABIX VIT.~ VELOCIYY DISTRIBULION OF PROFIIE [Meo= 0.3 o = -207]

TABIS VIIL.— VEIOCTT! DISTRIBUTION Of PROFIIE [Nep= 0.3; « = ~20°]

A x 4 27 g £ g M
-90° | 0.0000 | -0.9925 | 0,993 | ~%0.0° 0,512 | 0.k608
~75° o.zk_67 -0,9%1% | 0,992 ~75.60 o.lg72 ] o.lﬂisle
£0° | olgsb | -0.8596 | 0.99%60 | -50.80 04331 | 0.397%
50 | o0.6935 | -0.72@2 ] 0,999 | -¥6.1° 0.33%6 | 0.3156
-30° | 0,558 | -0.5196 | 1.0837 | -31.2° 0,2031 | 0.1390
-15° | o0.9%72 | -v.2792 | 1.0067 | -16.1° 0.0539 { 0.0538
e 10079 | -0.0160 | 1,008 -0:90* | o;msh 0.1087
150 0.9756 0,2496 1.0070 1%4.3° .2773 0.2’672
30 | o730 | olgh2 | .00 29,6 s Mi27 | oo
W0 | o709 | o,7089 | 1.0001 4y 50 0.5913 0.5090
60 | 04990 | o.8622 |o0.9%2 59.9° 0.70712 | 0.5
5° | o.m72 | 0.5 |o.9953 | 7s.00 0.7926 | o0.6z12
9° | 0.0000 | 0,993 |0,9983 90,0° 0.520% | 0.5342

A x 7 51 {emg = g m |
~90e | 0.0000 | -0.9922 | 0.9922 | -90,0¢ | 0.3976 | 0.36%4
=75 0.2452 ~0.9626 ©.9933 =75.7° 0.3171 0.3529
oo 1 oolirgh } —omnn ] pooged ) 6130 tooamazz ) o300
e | o0.6859 | ~0.7287T | 1.0007 | -46,7¢ | 0.228 | 0.2165
-30° o.t_ﬁas -0,5317 10048 -31,9¢ 0.0966 0,0962
-15¢ [ 0,937 | -0.2937 | 10075 | -17.0¢ | o.0510 [ 0.0509
00 1.0078 «0,031k 1,0083 ~1,80 0.2179 | o0.2129
150 | 0.9191 0.23% | 1,0069 13.5¢ | o.kods | o.37%0
300 0.879% 0.L539 1.0037 28 8o o572 o.laba
W5e | 0.773 0.6965 | 0.9938 bi2e 1 0.7393 | 0.5%5
$0e | 0,5060 0.8579 | ©.9%0 59.5° | 0.8785 0.6600
T5¢ 0,261k 0.9582 0.9932 .70 0.9711&. 0.6968
90* | 0.0000 0.9922 | 0.9922 90.,0¢ | Lool | o.7086

o
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OR OF FROF FROM CIRCIE

TABIE X.— VELOCTIY DISTRIBUTION OF FROFIIR [M = 0.5; a = ~209]

TABIE IX,~ D
i = 0.4; o = -p0°
ry Hm j ‘\

x ¥ Ty arg % A x ¥ 12 ) arg @ g M
0.0000 | -0.9862 0.9862 | ~90.0° -90° | 0,0000 | ~0.97% | 0.97% -90.0° | 0.7670 | 0.6086
o.2344 | -0.9602 0.9884k | -T6.3° <150 | o.e2il | -0.9559 | 0.9818 -76.8° | 0.6578 | 0.5495
04613 | -0.8810 | 0,995 | 62k | | oo | oa36e | om0 | 0.9861 | -63.70 | o.5361 | 0M7
0.6692 | -0z | 1,003 | -8.1° | | use | o.6k59 | ~0.761 | o0.998% ] oo | 03717 | 0.3529
~300 | 0O, ~0. 1.0100 ~35.40 0.1673 | 0.1650

0.8uU20 ~05569 1,009% -33.5° 0 8223 5856
0.9%618 | -0.3214 loul | -18.5° -150 | 0.%553 | -0.3587 1,008 | -20.6° | 0.0919 | 0.0915
1.0136 | ~0.0566 1.0152 ~ 3,20 0 | 21,0219 ~0,0820 1,0260 - Bl o.ko8y | 0.3785
0.939% 0.2154 1,0126 12,30 15¢ | 1,0069 0.1903 1.0247 10,70 0.8025- | 0.6259
oz | ooy | o068 | z7.8e 300 | 0.9077 | o576 | 1.0065 | 6.8 | 1.2953 | 0.7916
0,758 0,6876 0,9998 43,5 e | 0.7372 0.6819 1,0042 42,80 1.882% | 0.8831
0.5iil 0.8512 6.9329 59,4° 60e | 0.5162 0.8468 0.9917 58 .6o 2,5278 | 0.9299
C.2636 | 0952 | 0988 | TS| | 5o | ouflg | 003 | 09827 | Thde | 3056 | 0.3
0.0000 Q=g@g Q=QS62_ 90.00° one A AR n Aene n ovnx an ne Z e N ORRA
- g Y Uauaans Vel 52 VeJiJg TV e P b Ve sii
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TABLE XL~ ”ﬁ,f_ﬁ“‘f‘%‘_’gfﬁ AT T i TBIX XIT,— VELOCTIY DISTRIBUTION ON FROFTIE [My= 0.7; o = 0°]

A x ¥ e arg = A A x ¥ EX arg e q M
-900 0.0000 -0.9715 | 0.9715 -90.00 -90e 0,0000 | 0,549 0.945% | -90.0° 2.7456 | o0.9429
=15° | 0.2035 <D, 9501 | 0.9729 | -T1.6° | |-y50 | 0,243 | -0,9281 | 0,584 | -76.o 2,6081 | 0,9337
£0e | 0,429 -0.8888 | 0,981 | ~65.1° b0 ! o5 | -0,8618 0.9711 | -62.60 2,2270 | 09121
25e | 06109 | -0.7865 | 0.9959 | 52.2° | l.hme | o664 | -o.yhao | 0,990 | we2e | 16867 | o.8602
~300 0.7997 ~0.6302 | 1,082 | -38,2° ~300 0.8606 | ~0.5579 1,025 | -33,00 1,0816 | 0,737k
-15e 0.94570 -0.h122 [ 1,0328 -23,5¢0 ~150 1,0063 | -0.3043 1.0513 ~16,80 0.5127 | 0.4562

00 | 1.0317 ~0.132 | 1,0M6 | -7.9° 0o | 12,0620 | 0.0000 1.0620 0.0° | 0.0000 | 0,0000

150 1.0296 0.1506 | 1,0l06 g.30 1he 1,0063 0.3043 1.0513 16,80 0.5127 | o.ls62

30 | 0,9335 0.4338 | 1.029% 2k.9° 300 | 0,8606 | 05579 1,025 | 33.0 1.0916 | 0.737H

lige 0.7565 0,670% | 1.0206 41,50 l5e 0.6644 0.7420 0.9960 g, 20 1.6867 | 0.8602

bae 0.53 0.8392 | 0.9906 57.9° 600 0. U475 0.6618 0.5711 62,60 2,2270 | 0.9121

75¢ | 0.2689 0.9385 | 0.9763 . 4,00 75¢ | 0.243 | o0.9281 0,958 76.ho0 2,6081 | 0.9337 |

90+ | 0,0000 0.9715 | 0.9715 90, Qe 90° | 0.0000 | 0,944 9,5k 50,00 | 2,756 | 0.9429

et
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TABTE XTTT.— PR oo.l%’u!; F FROM CTRCLE TABIE XIV.~ VETIOOTTY DINFRIEUTION OF PRQFIIR [M_ = 0.7; a = -10°]
A x ix1 | arg = A x 7 jz) | are s 1 M
:900 0,0000 | -0.9499 | 0.9%93 ~90,0° -90° | 0,0000 | -0,%519 | 0.9519 | -90.0° | 1.keg7 | o0.8286
~T5° 0.2151 | ~0.9306 0.951 | ~77.0° ~75° | 0.2069 | -0.9338 | 0.9565 | -77.5° | 1.bak3 | o.z:18k
~600 0.i300 [ ~0.8693 0.9699 | ~63.7° ~bge 9-;1‘1% 0.8 ¢ OuT0R | BT ) L2355 ) O
o 0.6409 | -0.7591 0.9935 | ~9.80 ~#50 | o.6188 | -0.775% | o.9%21 | -5Lbe | o.9W4% | 0.6866
=300 0.8358 | -0.5882 1.0220 ~35.10 ~3ge 0.8119 ~0,6165 1,0195 | -37.2° 0.578% | 0,5007
~150 .9897 | -0.3h482 10491 | ~19.he -15¢ | o,9708 | -0.3%02 | 21.0%63 | -21,9° | o0.1558 | 0.1539

0e 1.0607 | -0.0512 10619 | - 2.8 ! oc | 12,0573 | -0,1008 | 10622 | -5.5¢ | 0.3480 | 0,3287
150 1.0227 0,2582 ' 2,0586 14,20 15¢ 1.0373 0.2110 1,0585 11,5° 1,0393 | 0.7206
300 0.8860 | o0.5262 1,0300 30.7° 300 | 0.9115 0.4923 1,0360 28, o 2,140 | 0,900
B0 | 0.6893 | 073 | 0.9998 (| W6Ho ¥o | oI5 | o0.705% |.1,0088 | Mu6o | 3.7732 | 0,9666
6oe 04663 | 0,854 0.9732 61.h0 6oo | o.ug64 0.%72 | o,9769 | 60,10 | 6.0137 | 0.9%865
T5° | oz | o.9270 0.9561 75,80 75° | 0.2y 0.9266 | 0.958% | 75,20 | @6.2639 | 0.9928
900 0,0000 0.9499 0.9499 90,00 900 0.0000 0.9519 0,919 90,00 9.7921 | 0,9948
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NACA TN No. 1171

TABLE XV.— DISTORTION OF PROFIIE FROM CIRCLE BY TSIEN'S METHOD [Hm- 0.7]

A x y 1% arg x ‘\
~90° 0.0000 -1,151 _. 1,154 =90,00
~75° 0.1445 ~1,1347 1.1439 -g2.7°
~600 0.3075 -1,0661 1.1097 ~73.9°
~h50 0.4892 -0,9250 1.0464 -62,10
-300 0.6659 ~0,6926 0.9608 -4, 10
-150 0.7971 ~0.3731 0.8801 -25,1°
oe 0.8U59 0.0000 0.8459 0.0°
150 0.7971 0.3731 0.8801 25,10
30° 0.6659 0.6926 0.9608 k6,10
450 0.4892 0.9250 1,046N4 62,10
600 0.3075 1,0661 1.1097 73.9°
75° 0.1445 1,1347 1.1439 g2,7°
| 90° 0.0000 1,1541 1,1541 g0.0°

=
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WACA TH No. 1171 Figs. 5,8
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Figure 6.- Absolute value of z as & function of the argument of £. a = 0°,
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Figure 8 .- Kach number as & function of the argument z. Mgy = 0.3,
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NACA TX No. 1171 Figs. 9,10
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